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LETTER TO THE EDITOR

The leading asymptotic term for the scattering diagram in the
problem of diffraction by a narrow circular impedance cone
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91680 Brugres le Chtel, France

T Department of Mathematical Physics, Institute of Physics, Saint Petersburg University,
Uljanovskaja 1-1, 198904, Russia

Received 17 August 1998

Abstract. The leading term for the scattering diagram, in the scalar problem concerning the
diffraction of a plane wave by a narrow circular impedance cone, is obtained. Although, up to
now, the problem cannot be solved in an explicit form, its reduction to a non-oscillating integral
equation has been recently developed. It is used here in order to determine formal asymptotics of
the scattering diagram by means of a perturbation method.

It is well known that one can obtain closed form expressions of the scattering diagram for a
narrow circular cone (Felsen 1955, 1957) and, more generally, for an arbitrary shaped narrow
cone (Babich 1996) if Dirichlet or Neumann boundary conditions are imposed on its surface,
when the wave field is governed by the scalar wave (Helmholtz) equation. In comparison, as
mentioned by Jones (1964), the problem is much more difficult if we consider mixed boundary
conditions of constant impedance type. This type of boundary condition was extensively used
since the works of Leontovich, and it has been the subject of many analytical developments
(see for instance, Maliuzhinets (1958), and also some recent results, Bernard (1998), Lyalinov
(1997), for the diffraction by 2D wedge-shaped singularity). It is worth noting that separation
of variables fails to give a discrete basis of functions satisfying a constant impedance condition
for obstacles with edge or vertex, even in the case of an impedance cone with a circular cross
section. However, an analytical method was recently developed (Bernard 1997) for this case,
reducing the problem to the unique solution of an integral equation with non-oscillating kernel.
In this letter we exploit these results and develop the leading asymptotic term of the scattering
diagram for a narrow impedance cone. As is known, the scattering diagram (or diffraction
coefficient) is one of the mostimportant characteristics in the theory of diffraction, in particular
because of its use in high frequency techniques (Keller 1962). A harmonic time dependence
€ is from now on assumed and suppressed throughout.

We consider that an incoming plane wavéilluminates a circular cone, with

U'(R, 6, @) = gkR(cosd cosdotsing sindo cosy) "

where R, 0, ¢ are the spherical coordinates (see figure 1) and a wavenumber with
|argik)| < m/2. We assume that the total radiated figle- U’ + U satisfies, in the domain
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Figure 1. Geometry of the cone.

6 < 6, the Helmholtz equatiotA + k?)u = 0, and, on the cone’s surfage= 0, > /2, the
constant impedance boundary condit'((%%g +iksing)u = 0, where the relative impedance
sin¢ is a constant with R@in¢) > 0. Using the results of Bernard (1997), the scattered field
U in the problem of diffraction by an impedance circular cone can be determined in the form
of Fourier series

o0 ) 1 + )
U(R,0,¢) = Z i"E,(R, 0)e " i"E, =i "E_, = o Ue do 2)

n=—oo -

with, forn = u — % >0,
Eu_1/2(R, 0) = f GO (F)" V2P 4% (cosp F i0D K, (ikR) (ikR) ™2 dr /i ®3)
0

WherePt:’i;zl/z(z) is the associated Legendre function akigz) is Macdonald’s (modified
Bessel) function. The representation (3) has been shown to exist when the Gagies,,
respectively angle of observation and angle of incidence of the incoming plane wave, satisfy
the inequalities

0 — 60> /2 01— 0 +0,— 60— /2 > |argik)| ()

considering that/ = O(R') with I > —1 in vicinity of the apex, and/ = O(gkRcose*/2)
asR tends to infinitye (0, 6p) = min(x/2, 2601 — (6 + 6y + 71 /2)).
Our aim is to determine in closed-form the leading term of the scattering diagrafm
the wave scattered by the vertex of a narrow impedance cone. This function, related to the
expression ot/ asR tends to infinity, is defined by

o0

F@O.9)= Y i®f(n+3 0" (5)
where f follows from the expression

kR

g kR
Eum12 = fu, 9>We'”/2°*—1/2>(1 +O(1/kR))
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as we use the leading asymptotic term of the modified Bessel function coming from

K,(z) = \/;exp( & (1+0:z™) |z > 1 Jargz| <=

NG
in the expression (3), the resulting integral then converging as (Bernard 1997)
0 —0+61—6g—7m/2 > m/2. (6)

This condition properly describes a domain where the incident and the tip diffracted waves,
but not the geometrical optics reflected waves, exist in the far field. We note that this domain
corresponds to takiereal in the inequalities (4).

The functionG (¢) in (3) is determined through the unique solution, in the sgager),
of the integral equation (Bernard 19971)

sing sinmt ;
R( ) = 2 i W([)R([)m dt +S (U) (7)
with
_ . Pu,1.0)
W = IP/3O |4y, ®)
Pl 1.6) = (Fi)" 1/213"”1/2<cos[9 Fi0'])
RO = Zrsing 6 © @ oty ®)

The free termS’ of the integral equation (7) is attached to the incident figid It can be
expanded as follows (Bernard 1997)

sinmt

; 1 e , itP! i 4
S = —= R - +-R@t+D) —-R @t —-1)])——dt
) 2 /_ioo [sin¢R (1) AP /30 | g, 2( ¢+D ( )] cosnt + cosmv
1 [ie . itP! sinmt ,
= — = sincR! (¢ _ dr — R’ 10
2[400 ngR @ dP! /86 |4_p, COSTL + COSTTV ) (10)
with
P, t,0) = (:Fi)”’l/th q};/z(cos[n — (@ +i0")])
. P!
R (1) = -
@) 4t smm Rl (11)
i \/E H —u+1/2 . A+
G'(1) = ——fatSIn(nt)F(u DT (= 1) P, 235" (cospo +i07]).
T

The principal formulae concerning the reduction of the scalar probleimg statedwe
can search an explicit calculus fR&rand then for the scattering diagraim

Itis possible to show that, wheh tends tar (narrow cone), the integral equation (7) can
be solved with a perturbation method. In order to obtain the leading term of a solution of this
equation, we use asymptotics (Erdedyial 1953) of the function® andP’. As6; — m, we
have

. 1 -+

7?(%, b 81) ~ smn(}: 5) (In (1+cos{§1 Fi0")

)+y+21,h(v— )+ncotn(v——))

sinz(v — )
= T(2 In(w — 61) + O, (1)) (12)

T In this work replacey,; by R, in the expression af, p 39, in (3.31) p 41 and in section (b) of appendix 12; change
sin¢ into — sin¢ p 49 (after the first colon) to p 53; replace p 53, in first sentékigdy — W, s, and in the coupled
integral equations-1 by 1.
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wherey is the Euler constant angl(v) is the digamma function, and
T'(n — 3)(1+cogoy)) /24

9 ~

P(/’L» va 1) 2_IL/2+1/4F(/,L + v)l—‘(,u _ V)

= Cpo(mr — )21+ 0, ,(r —6)?) w> 3. (13)
In the same manner, we have

Pi(Gv,0) =1— (%= H(r —0)?/4+0,((r — 6% (14)
and
. 1 — coSm — 0))#/2-1/4

P (. v, by) ~ LGOI — 6) = Dy — )P Y21+ 0, — 6D (15)

2u2-VAT (1 + 1/2)

for u — % a positive integer. The estimates (12), (13) enable us to conclude that the function
W (¢) in the kernel of the integral equation has the asymptoticg, as =,

W(t) ~it(mr — 6 In(@ — 01) (16)
if © =1, and
W) ~ it(r —61)/(3 — ) a7)
for u > % Analogously we find from (14), (15) that, 8 — ,
L PI(1/2,t,61) 2it
0P /36ls, 12—

T(m =67 (18)
4

and
P, t, 61) it

0P /001, L1

for u — % a strictly positive integer.
It is now obvious that the integral equation has asymptotically small kernel for a narrow
cone, and thus, that previous expressions allow to find the leading term of the solution by a
perturbation method. As follows from expression (1056fn the leading approximation, the
solution is then given, except fosin¢| = 0 or oo, by
imsing [i® G (1)
8 _ico COSTTE + COSTV

where we takeu = % for the expression o6’. The other terms corresponding o %

give contributions of lower orders of size with respect to the small parameter. By means of
formula (9) forR and the expression @', we then find, from (20), that the leading term for

G is given by

(r —61) 19)

Ro(v) = — (20)

0 i 100

We then use formula (21) in order to obtain the leading term of the scattering diagram for a
narrow impedance cone. We substitG®into expression (3), exploit the asymptotics of the
modified Bessel function, and then obtain the leading tefhfor F. Finally, we come to the
expression for the scattering diagram in the leading approximation

w(mw —6y)sing [ [i® . -
F°0.,¢) = flg/o /0 PP 1 ,(cospo +i0']) P, ,(cosp +i0'])

tvtan(mrt) tan(rv) d
X
CoSmt + COSmv

¢ dv. (22)
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Let us recall that we have obtained this result assurpsiy | is not equal to 0 ovo, which
signifies more precisely, from (16) and (18), that the approximation by the leading term (22)
is valid provided the condition

(r —6) < [sing| K 1/|(r —61) In(w — 64)] (23)

is satisfied. We notice that the integral converges when the conditions (6Ywith =
are satisfied and that the diagram does not depend on the coordiivatie narrow cone
approximation. The expression (22) is also symmetric with respeft amd6, which was
expected due to the reciprocity theorem. Moreover, itis quite remarkable that itis now possible
to calculate a closed form expression of the double integral (22).

For this purpose, we use Fock’s representation for the Legendre functions (Fock 1943)

0 sin(x[w + v])
P;._1,2(coshw) = (2/7) cot 24
ya(eoshy) = /) coth(r) | e . (29
After changing the orders of integration, we then come to the expression
2A
FO©.9) = =3 / f dwldwz[/ f
8 x sin(x[wy + v])y sin(y[wz + vg]) dx dy :|
+/coshw; +v) — coshv/cosh(w;, + vg) — coshvg(coshr x + coshrry)
(25)
whereAg = (/2)(;r — 01) Sin¢, vg = —ifp + 0" andv = —i6 + 0*. The integrations with

respect taw;, w, are due to the respective integral representations (24) of the two Legendre
functions. Now, taking into account thét(coSa[b; + ¢]) = —a sin(a[b; + c]), we obtain the
expression

1
F°0, ) = -=— f / dw- d
©.9) 2 Wz J/coshw; + v) — coshv./coshws + vg) — coshug
cos(x[w1 + v]) co(y[wy + vo])
dx dy|. 26
8v8vo |:/ f coshrx + coshry o y] (26)

For the internal integral an, we use formula 3.983.2 from (Gradshteyn and Ryzhik 1980), then
we compute the integral with respecttby means of the formula 3.981.5. After differentiation
onv andvg we can write

F°0, ¢) = 2AO / / dw1 dwy[sinh(w, + vg) sinh(w1 + v)] [\/COSP‘(wl +v) — coshv

1
/coshw, + vg) — coshvg(coshw; + v) + coshw; + vo))3] . (27)

We introduce the new variables of integration in (27)

= /coshw; +v) — coshv g = /coshws + v) — coshug
and come to the double integral

8Ao 1
F°0,¢) = dp dg. 28
©.9) / / [(cos@ +Ccostp + p? + q2)3} P (28)

The double integral (28) is ea5|ly calculated by means of introducing the polar coordinates.
As a result, we then obtain:

(r — 61) sing

FO 0, =
©.¢) 2(cosh + cosHp)?

(29)
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leading asymptotic term faF as6; tends tor (except for sirt = 0 or co), and narrow cone
approximation of the scattering diagram as the condition (23) ot sisatisfied.

Whereas the analogous results for cones with Dirichlet or Neumann conditions are well
known, the formula (29) for a narrow circular impedance cone seems to be new and not
considered in the literature. Its simpleness should permit an easy use for further mathematical
and physical developments, and for tests of other results such as numerical ones.
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