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LETTER TO THE EDITOR

The leading asymptotic term for the scattering diagram in the
problem of diffraction by a narrow circular impedance cone

J M L Bernard†§ and M A Lyalinov‡‖
† Département de Physique Théorique et Appliqúee, CEA/Centre d’Etudes de Bruyères, BP12,
91680 Bruỳeres le Cĥatel, France
‡ Department of Mathematical Physics, Institute of Physics, Saint Petersburg University,
Uljanovskaja 1-1, 198904, Russia

Received 17 August 1998

Abstract. The leading term for the scattering diagram, in the scalar problem concerning the
diffraction of a plane wave by a narrow circular impedance cone, is obtained. Although, up to
now, the problem cannot be solved in an explicit form, its reduction to a non-oscillating integral
equation has been recently developed. It is used here in order to determine formal asymptotics of
the scattering diagram by means of a perturbation method.

It is well known that one can obtain closed form expressions of the scattering diagram for a
narrow circular cone (Felsen 1955, 1957) and, more generally, for an arbitrary shaped narrow
cone (Babich 1996) if Dirichlet or Neumann boundary conditions are imposed on its surface,
when the wave field is governed by the scalar wave (Helmholtz) equation. In comparison, as
mentioned by Jones (1964), the problem is much more difficult if we consider mixed boundary
conditions of constant impedance type. This type of boundary condition was extensively used
since the works of Leontovich, and it has been the subject of many analytical developments
(see for instance, Maliuzhinets (1958), and also some recent results, Bernard (1998), Lyalinov
(1997), for the diffraction by 2D wedge-shaped singularity). It is worth noting that separation
of variables fails to give a discrete basis of functions satisfying a constant impedance condition
for obstacles with edge or vertex, even in the case of an impedance cone with a circular cross
section. However, an analytical method was recently developed (Bernard 1997) for this case,
reducing the problem to the unique solution of an integral equation with non-oscillating kernel.
In this letter we exploit these results and develop the leading asymptotic term of the scattering
diagram for a narrow impedance cone. As is known, the scattering diagram (or diffraction
coefficient) is one of the most important characteristics in the theory of diffraction, in particular
because of its use in high frequency techniques (Keller 1962). A harmonic time dependence
eiωt is from now on assumed and suppressed throughout.

We consider that an incoming plane waveUi illuminates a circular cone, with

Ui(R, θ, ϕ) = eikR(cosθ cosθ0+sinθ sinθ0 cosϕ) (1)

whereR, θ, ϕ are the spherical coordinates (see figure 1) andk is a wavenumber with
| arg(ik)| < π/2. We assume that the total radiated fieldu = Ui +U satisfies, in the domain
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Figure 1. Geometry of the cone.

θ < θ1, the Helmholtz equation(1 + k2)u = 0, and, on the cone’s surfaceθ = θ1 > π/2, the
constant impedance boundary condition( ∂

R∂θ
+ ik sinζ )u = 0, where the relative impedance

sinζ is a constant with Re(sinζ ) > 0. Using the results of Bernard (1997), the scattered field
U in the problem of diffraction by an impedance circular cone can be determined in the form
of Fourier series

U(R, θ, ϕ) =
∞∑

n=−∞
inEn(R, θ)e−inϕ inEn = i−nE−n = 1

2π

∫ +π

−π
Ueinϕ dϕ (2)

with, for n = µ− 1
2 > 0,

Eµ−1/2(R, θ) =
∫ i∞

0
G(t)(∓i)µ−1/2P

−µ+1/2
t−1/2 (cos[θ ∓ i0+])Kt(ikR)(ikR)

−1/2 dt/i (3)

whereP−µ+1/2
t−1/2 (z) is the associated Legendre function andKν(z) is Macdonald’s (modified

Bessel) function. The representation (3) has been shown to exist when the anglesθ andθ0,
respectively angle of observation and angle of incidence of the incoming plane wave, satisfy
the inequalities

θ1− θ0 > π/2 θ1− θ + θ1− θ0 − π/2> | arg(ik)| (4)

considering thatU = O(Rl) with l > − 1
2 in vicinity of the apex, andU = O(eikR cos(ε+π/2))

asR tends to infinity,ε(θ, θ0) = min(π/2, 2θ1− (θ + θ0 + π/2)).
Our aim is to determine in closed-form the leading term of the scattering diagramF of

the wave scattered by the vertex of a narrow impedance cone. This function, related to the
expression ofU asR tends to infinity, is defined by

F(θ, ϕ) =
∞∑

n=−∞
i2nf (n + 1

2, θ)e
−inϕ (5)

wheref follows from the expression

Eµ−1/2 = f (µ, θ)e
−ikR

ikR
eiπ/2(µ−1/2)(1 + O(1/kR))



Letter to the Editor L45

as we use the leading asymptotic term of the modified Bessel function coming from

Kν(z) =
√
π

2

exp(−z)√
z

(1 + O(z−1)) |z| � 1 | argz| < π

in the expression (3), the resulting integral then converging as (Bernard 1997)

θ1− θ + θ1− θ0 − π/2> π/2. (6)

This condition properly describes a domain where the incident and the tip diffracted waves,
but not the geometrical optics reflected waves, exist in the far field. We note that this domain
corresponds to takek real in the inequalities (4).

The functionG(t) in (3) is determined through the unique solution, in the spaceL1(iR),
of the integral equation (Bernard 1997†)

R(ν) = sinζ

2

∫ i∞

−i∞
W(t)R(t)

sinπt

cosπt + cosπν
dt + S i (ν) (7)

with

W(t) = −it P(µ, t, θ)
∂P/∂θ

∣∣∣∣
θ=θ1

(8)

P(µ, t, θ) = (∓i)µ−1/2P
−µ+1/2
t−1/2 (cos[θ ∓ i0+])

R(t) = π

4t sinπt
G(t)

∂P
∂θ

∣∣∣∣
θ=θ1

. (9)

The free termS i of the integral equation (7) is attached to the incident fieldUi . It can be
expanded as follows (Bernard 1997)

S i (ν) = −1

2

∫ i∞

−i∞
[sinζRi (t)

itP i

∂P i/∂θ

∣∣∣∣
θ=θ1

+
i

2
(Ri (t + 1)−Ri (t − 1))]

sinπt

cosπt + cosπν
dt

= − 1

2

∫ i∞

−i∞
sinζRi (t)

itP i

∂P i/∂θ

∣∣∣∣
θ=θ1

sinπt

cosπt + cosπν
dt −Ri (ν) (10)

with

P i (µ, t, θ) = (∓i)µ−1/2P
−µ+1/2
t−1/2 (cos[π − (θ ± i0+)])

Ri (t) = π

4t sinπt
Gi(t)

∂P i

∂θ

∣∣∣∣
θ=θ1

Gi(t) = −
√

2
√
π

3 t sin(πt)0(µ + t)0(µ− t)P−µ+1/2
t−1/2 (cos[θ0 + i0+]).

(11)

The principal formulae concerning the reduction of the scalar problembeing stated, we
can search an explicit calculus forR and then for the scattering diagramF .

It is possible to show that, whenθ1 tends toπ (narrow cone), the integral equation (7) can
be solved with a perturbation method. In order to obtain the leading term of a solution of this
equation, we use asymptotics (Erdelyiet al 1953) of the functionsP andP i . As θ1→ π , we
have

P( 1
2, ν, θ1) ∼

sinπ(ν − 1
2)

π

(
ln

(
1 + cos(θ1∓ i0+)

2

)
+ γ + 2ψ(ν − 1

2) + π cotπ(ν − 1
2)

)
= sinπ(ν − 1

2)

π
(2 ln(π − θ1) + Oν(1)) (12)

† In this work replaceχd byRd in the expression ofI2 p 39, in (3.31) p 41 and in section (b) of appendix 12; change
sinζ into− sinζ p 49 (after the first colon) to p 53; replace p 53, in first sentenceWn by−We,δ , and in the coupled
integral equations− 1

2 by 1
2 .
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whereγ is the Euler constant andψ(ν) is the digamma function, and

P(µ, ν, θ1) ∼
0(µ− 1

2)(1 + cos(θ1))
−µ/2+1/4

2−µ/2+1/40(µ + ν)0(µ− ν)
= Cµ,ν(π − θ1)

−µ+1/2(1 + Oµ,ν(π − θ1)
2) µ > 1

2 . (13)

In the same manner, we have

P i ( 1
2, ν, θ1) = 1− (ν2 − 1

4)(π − θ1)
2/4 + Oν((π − θ1)

4) (14)

and

P i (µ, ν, θ1) ∼ (1− cos(π − θ1))
µ/2−1/4

2µ/2−1/40(µ + 1/2)
= Dµ,ν(π − θ1)

µ−1/2(1 + Oµ,ν(π − θ1)
2) (15)

for µ − 1
2 a positive integer. The estimates (12), (13) enable us to conclude that the function

W(t) in the kernel of the integral equation has the asymptotics, asθ1→ π ,

W(t) ∼ it (π − θ1) ln(π − θ1) (16)

if µ = 1
2, and

W(t) ∼ it (π − θ1)/(
1
2 − µ) (17)

for µ > 1
2. Analogously we find from (14), (15) that, asθ1→ π ,

it
P i (1/2, t, θ1)

∂P i/∂θ |θ1

∼ 2it

t2 − 1
4

(π − θ1)
−1 (18)

and

it
P i (µ, t, θ1)

∂P i/∂θ |θ1

∼ it
1
2 − µ

(π − θ1) (19)

for µ− 1
2 a strictly positive integer.

It is now obvious that the integral equation has asymptotically small kernel for a narrow
cone, and thus, that previous expressions allow to find the leading term of the solution by a
perturbation method. As follows from expression (10) ofS i in the leading approximation, the
solution is then given, except for| sinζ | = 0 or∞, by

R0(ν) = − iπ sinζ

8

∫ i∞

−i∞

Gi(t)

cosπt + cosπν
dt (20)

where we takeµ = 1
2 for the expression ofGi . The other terms corresponding toµ 6= 1

2
give contributions of lower orders of size with respect to the small parameter. By means of
formula (9) forR and the expression ofGi , we then find, from (20), that the leading term for
G is given by

G0(ν) = i
√
π/2(π − θ1) sin(ζ )ν tan(πν)

∫ i∞

0
P 0
t−1/2(cos[θ0 + i0+])

t tan(πt)

cosπt + cosπν
dt.

(21)

We then use formula (21) in order to obtain the leading term of the scattering diagram for a
narrow impedance cone. We substituteG0 into expression (3), exploit the asymptotics of the
modified Bessel function, and then obtain the leading termF 0 for F . Finally, we come to the
expression for the scattering diagram in the leading approximation

F 0(θ, ϕ) = π(π − θ1) sinζ

2

∫ i∞

0

∫ i∞

0
P 0
t−1/2(cos[θ0 + i0+])P 0

ν−1/2(cos[θ + i0+])

× tν tan(πt) tan(πν)

cosπt + cosπν
dt dν. (22)
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Let us recall that we have obtained this result assuming| sinζ | is not equal to 0 or∞, which
signifies more precisely, from (16) and (18), that the approximation by the leading term (22)
is valid provided the condition

(π − θ1)� | sinζ | � 1/|(π − θ1) ln(π − θ1)| (23)

is satisfied. We notice that the integral converges when the conditions (6) withθ1 = π

are satisfied and that the diagram does not depend on the coordinateϕ in the narrow cone
approximation. The expression (22) is also symmetric with respect toθ0 andθ , which was
expected due to the reciprocity theorem. Moreover, it is quite remarkable that it is now possible
to calculate a closed form expression of the double integral (22).

For this purpose, we use Fock’s representation for the Legendre functions (Fock 1943)

Pix−1/2(coshv) = (2/π) coth(πx)
∫ ∞

0

sin(x[w + v])√
2(cosh(w + v)− coshv)

dw. (24)

After changing the orders of integration, we then come to the expression

F 0(θ, ϕ) = −2A0

π2

∫ ∞
0

∫ ∞
0

dw1 dw2

[ ∫ ∞
0

∫ ∞
0

× x sin(x[w1 + v])y sin(y[w2 + v0]) dx dy√
cosh(w1 + v)− coshv

√
cosh(w2 + v0)− coshv0(coshπx + coshπy)

]
(25)

whereA0 = (π/2)(π − θ1) sinζ , v0 = −iθ0 + 0+ andv = −iθ + 0+. The integrations with
respect tow1, w2 are due to the respective integral representations (24) of the two Legendre
functions. Now, taking into account that∂c(cos(a[b1 + c]) = −a sin(a[b1 + c]), we obtain the
expression

F 0(θ, ϕ) = −2A0

π2

∫ ∞
0

∫ ∞
0

dw1 dw2
1√

cosh(w1 + v)− coshv
√

cosh(w2 + v0)− coshv0

× ∂2

∂v∂v0

[ ∫ ∞
0

∫ ∞
0

cos(x[w1 + v]) cos(y[w2 + v0])

coshπx + coshπy
dx dy

]
. (26)

For the internal integral onx, we use formula 3.983.2 from (Gradshteyn and Ryzhik 1980), then
we compute the integral with respect toy by means of the formula 3.981.5. After differentiation
onv andv0 we can write

F 0(θ, ϕ) = −2A0

π2

∫ ∞
0

∫ ∞
0

dw1 dw2[sinh(w2 + v0) sinh(w1 + v)]

[√
cosh(w1 + v)− coshv

√
cosh(w2 + v0)− coshv0(cosh(w1 + v) + cosh(w2 + v0))

3

]−1

. (27)

We introduce the new variables of integration in (27)

p =
√

cosh(w1 + v)− coshv q =
√

cosh(w2 + v0)− coshv0

and come to the double integral

F 0(θ, ϕ) = −8A0

π2

∫ ∞
0

∫ ∞
0

[
1

(cosθ + cosθ0 + p2 + q2)3

]
dp dq. (28)

The double integral (28) is easily calculated by means of introducing the polar coordinates.
As a result, we then obtain:

F 0(θ, ϕ) = − (π − θ1) sinζ

2(cosθ + cosθ0)2
(29)
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leading asymptotic term forF asθ1 tends toπ (except for sinζ = 0 or∞), and narrow cone
approximation of the scattering diagram as the condition (23) on sinζ is satisfied.

Whereas the analogous results for cones with Dirichlet or Neumann conditions are well
known, the formula (29) for a narrow circular impedance cone seems to be new and not
considered in the literature. Its simpleness should permit an easy use for further mathematical
and physical developments, and for tests of other results such as numerical ones.
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